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INTRODUCTION

A major computer vision task for robotics and other applications is the identifica-
tion of an unknown object as a member of a set known objects. The possibility that an
unknown might not belong to the set of known objects is a rarely considered type of
uncertainty. The methods presented here accomplish object type identification and
orientation estimation, as well as, considering several forms of uncertainty by develop-
ing models for them and rapid assessment techniques.

This report presents a unified set of techniques for the analysis of unoccluded
views of unknown objects. The original image data may be of any type; silhouette,
contour, and range data are used as examples . Three different types of object descrip-
tors are presented and contrasted. Their performance is analyzed, in the presence of
noise, for the basic task of estimating object orientation and/or position. To go beyond
the usual model maiching tests, objects are added to the test set that are not in the
known object database. Techniques are then developed which reject these objects,
avoiding misclassifications. Methods to assess the reliability of classifications of known
objects are also developed to reduce unanticipated errors. All these techniques are
framed in an intergrated architecture that is generally applicable.

The three dimensional model database for an object class is a library of feature
vectors, a set for each object type instance, generated from a uniform sampling of all
possible viewing angles. Objects are assumed to be rigid bodies viewed without occlu-
sion. Self-occlusion is allowed and is handled by the library sampling technique.
Unknowns in any orientation may be submitted for classification. Position is also un-
constrained provided there is not a significant change in perspective distortion between
model and unknown images. This implies an approximately fixed distance between the
sensor and the object or sufficient distance to approximate an orthographic projection.

To produce a classified feature vector representation, an image is segmented to
separate the object region from the background. Then a normalized feature vector is
generated to efficiently represent the object view; feature vectors based on moments
and Fourier descriptors are considered here. For both of these schemes, a fixed num-
ber of feature elements are generated for each object. This representation is then
normalized with respect to location, orientation (specifically, rotation of the object in the
x-y lane), and size The feature vectors each represent a single image of a three-
dimensional object, viewed from a given angle. The original image data can be either
silhouette, silhouette contour, or 2 1/2- dimensional range data. The term 2 1/2 dimen-
sional indicates that 3-dimensional information is available only for the visible surfaces
in the image to differentiate from tomographic (CAT) and computer aided design (CAD)
data that contain full three-dimensional data for an object. Object identification is
achieved by finding the best match between an unknown object feature vector and the
model library. The attributes of the best match model's are then conferred on the
unknown. .




Classification of these feature vectors is an interesting pattern recogniiton
problem. The continuum of views of a three-dimensional object, from either a constant
or normalized distance, from a continuous surface in feature hyperspace rather than a
cluster of points for a given class as is generally considered in classical pattern recogni-
tion problems. Furthermore, the differences between objects, particularly within a class,
are frequently less than the variations over different views for just a single object. A
nearest-neighbor classification rule is used to deal with this problem. Knowledge of the
topology of feature space is used to assess the reliability of the nearest-neighbor
decision.

For this recognition approach to function in an unconstrained environment, it
must be assumed that the objects other than those of just the classes (and types) that

are known to the system may be submitted for identification. In this situation, the
classification process only needs to identify a subset of the full set of obiects it might
encounter. Those items not in the subset may simply be grouped together; the total
number of classes is then the size of the subset plus one. The extra class en-
compasses all remaining objects not in the subset. In this environment, it is possible to
define a post-classification analysis technique to assess classification reliability.

This is accomplished.by classification quality assessment (CQA) which examines
a given classification of an unknown object in relation to the available known choices
and decides whether the unknown is likely to have come from the set of known classes.
This is the significant difference of this approach from the work of others; CQA offers
an explicit method for selecting a finite set of known objects from a potentially infinite set
of unknowns. This is a post-classification test that does not increase the order of the
computational complexity from that of the underlying system for identifying the finite set
of objects. y

CQA does nothing to speedup or simplify the basic system, other than allowing it
to contain potentially fewer models. Most related research has been aimed at achieving
faster searching or more effective data representations that will allow larger databases
of objects. This is not the goal here; these approaches directly address the fact that the
known search space is inevitably bounded by the assumption of a finite set of known
objects. These methods make explicit the boundaries of search space, but do not
expand it.

A second level of CQA analysis is also defined. This rejects the classification of
an unknown that comes from the set of known classes, but is likely to result in selecting
the wrong known object type or orientation as the identification choice. In essence , this
stage attempts to recognize errors in classifying objects from the set of known object
classes before they occur.




This set of techniques is intended as both a testbed for feature vector description
methods and object identification tasks, and as a way to achieve generality in the
presence of uncertainty. The latier was achieved without significantly increasing the
complexity over the basic classification method. Most of the information needed for
CQA is precomputed from the known data, and very little additional work is needed at
classification time.

In previous work (ref 1), two dimensional silhouette data feature vectors based
on standard moments (ref 2), moment invariants (ref 3), normalized Fourier descriptors
(refs 1 and 4), and three dimensional standard moments (ref 5), have been compared.
Results indicated that the performance of standard moments was far better than mo-
ment invariants and slightly better than Fourier descriptors for the given task. The use
of the descriptors for determining orientation was first demonstrated in reference 6. The
use of three dimensional information is critical for disambiguating orientation pos-
sibilities for objects with global symmetries. This report will also consider the applica-
tion of CQA methods (refs 7 and 8) to orientation estimation.

Important aspects of this work include the development of a quantitative method
for comparing different shape analysis schemes, generation of realistic synthetic data,
effective feature vector descriptors, and ways to dynamically assess classification
accuracy. Additionally, all these considerations are brought to bear on the problem of
estimating the orientation of objects that belong 1o a class of similar object types.

STRUCTURE OF THE IDENTIFICATION SYSTEM

The techniques developed are collected together in the object detection and
classification system shown below in figure 1. The system may be considered in two
sections; the precomputed part which is essentially the training phase, and then the run
time portion which is used for testing. For training, synthetic range images are gener-
ated from parameterized three-dimensional shape descriptors. For real images, a
camera and automatic positioning system could be used. Normalized feature vectors
computed from these images are stored in a library for all classes. For this particular
classification task, feature vector balancing has been found to improve the performance
of the system (ref 1). This involves computing the standard deviation of each feature
vector element over the entire library. Individual feature vector elements are then
balanced by dividing tneir associated standard deviation. Balanced feature vectors are
then analyzed for CQA considerations and stored in the final overall library database.

For controlled experiments, synthetic data are used for testing. It is also possible
to use real imagery for testing, as documented in previous two-dimensional experiments
(ref 9). Synthetic test images are generated from the same parameterized descriptions
used to generate the library data but with different viewing angles and resolution.




Noise is then added to these ideal images. A range noise model was developed to add
meaningful noise corruption to the range image data.

Once an image is obtained, an umage processing stage is performed. This
stage is responsible for noise filtering and object segmentation . A variety of classic
image processing techniques can be used to reduce the effects of noise given, typically,
a sensor-based noise model. For the moment-based feature vectors, no noise filtering
was done for the current experiment's synthetic noisy range data. For Fourier descrip-
tors, 3x3 mean filtering was performed to guarantee that a single closed contour could
be extracted. The range images were segmented by simple depth thresholding.

Following the preprocessing stage, a normalized feature vector is generated for
the segmented region in the test image. This vector is balanced using the same
parameters used to balance the library vectors. The object type identification is then
made by finding the best match between the library of feature vectors and the test
image feature vector. The orientation of the object is also obtained from the selected
library entry. The quality of this decision is then examined by the CQA process to
determine its validity.

MODEL DATABASE GENERATION

Icosahedron Based Sampling

To reasonably assess the success of an? classification scheme, an unbiased
and recreatable set of test data is required. Prior to the work accomplished in reference
5, most analysis of object recognition success from different viewing angles was per-
formed for just a set of random sample views that might, or might not, encompass the
degenerate points. In order to fully evaluate the object identification effectiveness of a
global feature representation and matching metric, an exhaustive, worst case technique
was developed. This was tested with the different feature vector representations.

Given a three degree of freedom viewing angle problem, the ideal test data set
would consist of all possible viewpoints. Based on initial assumption and range nor-
malization performed, this can be reduced to all possible viewpoints on a spherical
surface where the object is positioned at the sphere’s center. This is still an impossible
data set to generate; the next best choice is to equally partition the sphere’s surface into
a grid of viewpoints. These viewing locations would be close enough to insure that no
problematic views were omitted.




Such a uniform partitioning of a spherical surface is a nontrivial problem. A good
approximation, however, can be made by using a polyhedron with its sides subparti-
tioned to achieve the desired resolution level. Ballard and Brown (ref 10) suggest the
use of an icosahedron. A number of researchers have made use of this type of ap-
proach o achieve a partitioning of the Gaussian sphere into an extended Gaussian
image (refs 11 and 12).

An icosahedron was used for our current experiments. This 20-sided polyhedron
had each of its sides subdivided into 25 equilateral and identical triangles. The result-
ing polyhedron, when expanded so that all vertices touched the surface of an enclosing
sphere, had 500 faces and 252 vertices. Two data sets were then defined, one com-
posed of viewing angles corresponding to polyhedron’s vertices and the other view-
points located at the center of each side. One data set was designated as the library
(known) views and the other as the unknown views. The results is a worst-case test of
a given classifier, since the viewing locations for one data set are interstitially located
between the viewing locations of the other set. Therefore, the unknown views are
always as far as possible from the library views in geometric space The relationship
between the icosahedron and the viewing locations is shown in figure 2, and an actual
idea of the density of samples for the two sets of views in figure 3.

The viewing angle difference between library and unknown views of an airplane
vary from 6.0 to 8.7 degrees, with an average of 7.3 degrees, using the polyhedral
tessellation technique. It is assumed that the less than 3 degrees variation range is not
a problem. Wheather or not the overall tessellation is fine enough is assessed by the
CQA tests.

The Airplane Class

Starting with the airplane identification experiments of earlier researchers (refs 3
and 4 ), a systematic experimental method that will encompass a uniform subset of all
possible viewpoints of a given object was defined. Additionally, we have a predefined
test that will yield worst-case results for a given definition of the classification task. The
only class of objects the system knows of are airplanes; the system’s a priori knowl-
edge is contained in a library of six instances (types) of the class airplane.

Each airplane is described by a short list of parameters. These parameters are a
CAD-type representation of the three-dimensional surface of an airplane consisting of a
set three or four sided polygons. The nonairplane objects are similarly described.
Synthetic range images with specified viewing angle and resolution are created from
this description by silhouette and range data rendering software. The feature vectors
are than generated from these images.




Bhanu (ref 13) demonstrated that a geometric representation such as one used
by the authors for aircraft, can be generated from real objects using range data. Using
such a technique to generate a three dimensional model, which in turn is used io gener-
ate the model database of the authors, would maximize precomputation and minimize
classification time requirements. This is one logical approach to extending our system
to arbitrary real objects.

The viewing angle sets previously described were used to generate a iibrary of
normalized feature vectors; views for each airplane were generated and then collated
into a Lbrary database. This library contained 500 views for each airplane; the viewing
angles were obtained from the centers of the faces of the partitioned icosahedron.

Two different sets were defined. Both were at lower resolution than the library
views, and one had added range noise. Each test set consisted of 252 worst-case
views of the six airplanes or of the four nonairplanes (i.e., with viewing angles taken
from the vertices of the partitioned icosahedron as described above).

For the trails, each test view was matched, to its closest entry in the library by
means of a Euclidean distance measure in feature space. The Euclidean distance
_9
b

between two feature vectors, aand b, of lengths | 2 l=nadl B | =nis defined as:

n-1
Defa.b) = [§o<aa b)2]"™ (1)

The best match between an unknown and the library yields the minimum De,
notated as DE-MIN' This choice was then subjected to CQA considerations, and deci-
sions was rendered.

For the experiments in this report, the full library was used for both type orienta-
tion trails. It is worth nothing that a reduced "class--not type" could be generated for
orientation only experiments. In this case , only class membership (not type) would be
verified, and the orientation estimated. This provides the definition of class: a set of
object types that must be distinguished from each other, but that differ superficially
enough that they can be geometrically registered in a meaningful way.




Range Data Noise Model

A noise model for range imagery is significantly different from a model for con-
ventional intensity imagery, especially where discontinuities occur. For the intensity
imagery, simulating focus/lens errors and sensor noise can adequately be accom-
plished by low pass filtering and adding (Gaussian) noise to the image (e.g., ref 1). For
range imagery, the blur process is generally not meaningful, and sensor quantization
and noise can produced special problems (see reference 14 for an overview of range
finding techniques). For example, at an edge discontinuity in the range image, a range
sensor will detect one surface or the other but not the average between the two. There
is also, typically, some spatial uncertainty about the location of the edge. Approaches,
such as range inference from structured light projection (ref 15) and laser time-of-flight
sensors, will similarly make errors at surface discontinuities.

In the airplane experiment, the most significant edge is between the object and
the background since this also affects the value of the silhouette moments. To simulate
range noise realistically, the object edges in the synthetic image were perturbated by a
maximum of one pixel. An object ecge element which is reassigned to the background
is simply removed; however, range values must be generated for background elements
which are reassigned to the object. New range elements were estimated by computing
the mean of the existing adjacent range values of the actual object.

A second likely source of error in the range image is the range distance meas-
urement itself. To stimulate this form of error, Gaussian noise was added to the object
range pixels. This will generally only affect the range moment values and not the
silhouette moments.

Sample images from the airplane and nonairplane test set, both with and without
noise, are shown in figure 4. The nonairplane test is composed of a wine bottle, a
tetrahedron missing one face, an object composed of cubes, and a space shuttle.

The library views were generated at a resolution of 128x128 with depth quan-
tiized as an integer beiween 0 and 127. The two test data set both had a resolution of
96x96 (x96); one was generated with noise and one without. For the noisy test set, the
probability of an edge element changing from object to background (or vice versa) was
set at 0.4, and the added Gaussian noise had a standard deviation of 3.0. The typical
thickness of an airplane body with 96x96x96 resolution is 6 pixels. This data set is of
lower quality than data that can be obtained from current dense-sampling range imag-
ing devices [ the ERIM or Technical Arts White Scanners, for example (ref 16)).




FEATURE VECTOR GENERATION AND ANALYSIS

Moment-based Feature Vector Generation and Normalization

For this work, the moments for both the range and the sifhoueite images of the
object were computed. An image silhoueite is a2 binary valued projeciion of the visible
object surface function onio the x-y plane. Previous work (rei 1) hras shown that the
moments of the silhouette are suitable for shape classificaiion. The best resulis have
been obtained by using a combination of these two moment sels and by using nor-
malization parameters cf the silhoueite moments to normalize the range moments.

By maintaining the spatial correspondence beiween the two moment sels, not only are
there two distinct data descriptions of the object, but also information coriained in the
corespondence of the itwo data sets. Therefore synergistic improvement in resulis is
realized from the combination.

The conventional definition of the two-dimensional moment oi order n, where n=
(p+q), of a function f (x,y) is (ref 17)

M= [%Pyf(xy) cxdy

-00 -0O

p.g=0,1,2 (2)

A set of momemt values may be used to represent a segment of an image. In
this case, f(x,y) is the image function in the segment region. The image function is
assumed to be zero outside the segment region. Transformations such as rotation,
translation, and scale change can be performed in the moment domain with a small,
fixed number of operations. Depending on the segment size, this can represent a
substantial speedup over doing the equivalent operations in the original pixel domain.
Furthermore, a truncated set of moments offers a more convenient and economical
representation of the essential shape characteristics of an image segment as compared
to a pixel based representation. A complete moment set (CMS) is a truncated moment
set which contains all moments of order n and lower. On such a set, the operations of
the scale change, rotation, and translation are closed.

The first stage of the normalization process is to compute a standard m.oment set
for the silhouette moments (ref 2). A set of standard moments is a CMS which has
been normalized with respect to scale, translation, and rotation. To define those nor-
malizations, analogies to the moments of inertia of solid objects are drawn.




To nomzhze trensionms are compuled so that the low order transiormed standard
momemts have the fslowing values {rei 5):

M.=1 (area nommztzed (o 1)
M= M, =0 ( cenirel mogments; the ceniroid of the object funciion

transialed x=0, y=0)
;M =0 (rcleion nommalizalion; the sihousile rotaled to 2fign its principal

axis with 2 cogrdnaie axis)
For roiation nomalizzlion, o make ihe rolaiion quadrant unigue, meke

[ %] | > M .( ihe major principal axs is the x axis)
P4, >0 (ih= projection onle ife x axis has a negative skew)

improved resuils have besn cbiained by using aspeci raiio nonmzizaiion (rei 1). This
transforms ihe elfpsoid of inertia of ihe moments to be a circle; i.e., for aspect ratio
normalizeG momenis

Mnm"'M.oz

This transiormation is periormed aiter rotation normalization. The eriginal aspect ratio
of the moments, (MMIMZD)OE, is used in place of M, as a feature vector element.

Once the silhouetie momenis have bsen nomalized, the range moments are
normalized with the same transiorm parameters. This maintains an exact correspon-
dence between the silhouette and range moments.

An additional normalization step is required for range data, the normalization for
translation in the depth dimension. Several schemes for depth normalization have been
considered in previous work (ref 18), and the one documented in reference 15 is used
here. The problem is that the back of a range image cannot be seen; therefore, the
location of the actual center of gravily in the depth of dimension is not known. For
convenience, it is assumed that the object has a flat back parallel to the image plane,
and that the cross section of the occluded part of the object has the same shape as the
occluding boundary (the perimeter of the silhouette). Finally, it is assumed that the
normalized volume of the object is 1 (recall that the area of the normalized silhouette is
alsot). Any set of robust, consistent assumptions could be used; the advantage of the
proposed set is that they are easily implemented in the moment domain.




The origin of the depth dimension is set to the location of the assumed back
surface object. The translation of the range moment ser (Rm) is achieved with

R'

N=RPQ+ aSm

where (Sm) is the set of silhouette moments and « is computed to set the volume to 1.

For objects which are much deeper than they are wide, a will be negative; this implies
that the occluded seclicn has a negative volume. The experiments indicate that this
does not cause problems. However, a slightly better performance is achieved by using
a value for o which seis the volume to 3.

Fourier Descriptors Generation And Normalization

A possible set of features used to describe a contour are Fourier descriptors (FD)
(refs 9,19, and 20). The method used in the experiment is fully described in reference
4. A short description of the process is included here.

Given a silivoueiie of an object, iis coniour can be exiracted. I this is considered
as a closed contour C lying in the complex plane, then its Fourier series can be defined.
Trace it once in the counter-clockwise direction with uniform velocity v, obtaining the
complex function z(t) with parametert. Choose v so that the time T required to traverse
the contour is 2r. Traversing the contour more than once yields a periodic function,
which may be expanded in a convergent Fourier series. A Fourier descriptor of C is
defined to be the complex Fourier series expansion of z (t).

z(t) = E A (n) &™ (3)

fi=-co

where

on

r )
A(n)=2- z () e ™ dt @

The FD depends on both C and the starting point of z(t). In practice, C is taken
from a digitized image ; therefore, z(t) is not avaiiable as a continuous function. If z(k) is
a uniformly sampled version of z(t) of dimension N, the discrete Fourier transform
directly gives the N lowest frequency coefficients A(n).




The FD can be computed by resampling the sequence of perimeter points {o
span a power of 2 number of points and then computing the FFT (ref 4). Alternatively,
the Fourier coefiicients can be calculated using a DFT approach which uses the piece-
wise linear nature oi a chain code representation of the perimeter sequence to speed
the calculation (ref 20).

The frequency domain operations, which affect the position, size, orientation, and
stariing point of the contour, follow directly from properties of the DTF. Translation is
nomalized by sefiing A(o) to zero; size is normalized by dividing all A(i) by |A (1)}
Finally, in-plane rotation and stariing point position are normalized by changing the
phase of ihe coeifficienis so that A(1) and A (k), the nexi largest coeificient, have a
phase of zero.

The CQA Enhancements to the System

The CQA fest is defined in two levels. When an unknown feature vector is
submitted to the system, its nearest neighbor in the library of known feature vectors is
found. Tne first CQA level examines this decision, and makes a judgment about the
likelihood that this object belong to the selected class of known objects.

if an object has not come from the set of known objects, then the classification
decision is disregarded.

The object is, in effect, classed as rejected by the system.

If the object passes this first CQA level, the classification decision is scrutinized at the
second CQA level,. Here the objecti is believed to be from the set of known objects, and
the CQA tries to determine how likely it is that the wrong one of these objects has been
selected as the classif.cation choice.

Both these methods can function in one of two ways. The first way is that an
empirical analysis can show, based on the CQA measures, what the probability of error
at each level is. This information can then be passed along with the classification
decision, perhaps tempering later dependency on its validity. The second approach is
that the same empirical analysis can be used to set thresholds that guarantee a spe-
cific level of certainty. The classification system then actively rejects objects that do not
meet the certainty criteria.

Since the initial classification decision is made using a Euclidean distance
measure, the Euclidean distance has been established as a metric to measure match
quality. It is reasonable to suppose that a simple CQA assessment might be achieved
by just thresholding this metric. Our CQA techniques go beyond this, trying to embody
more sophisticated information about feature space, while still depending on a priori
information. To show effectiveness of these methods, they are compared to simple
Euclidean distance thresholding technique in the results.

11




Known-Class CQA

The known CQA method for determining if an unknown object comes from a
known class of objects exploits the geometry of feature space. O (j) is defined as

object i viewed from position j, and F(-) as the feature vector generating function. From
this, the feature vector has been obtained for oj) as _\7)i(j) =F[0i(j)] , where F:R *LHR"
given | 3P| =n. If the n-dimension feature vectors could be generated for every possible

view of an object from a fixed distance, the unnormalized feature vectors would define a
continuous closed hyper-surface in feature space. This assumes that our feature vector
generating function and our input image are both continuous. Afier normalization, there
may be a small number of hyper-surface discontinuities introduced between geometri-
cally adjacent library views (ref 4).

Any feature vector of the object will lie on this hyper-surface. A feature vector
belonging to any other object will not lie on this hyper-surface, unless the degenerate
case of two different objects that appear identical from view is present. This latter
condition cannot be guarded against in a system tnat works with single views of an
object.

In practice, a discrete valued feature vector generation function applied to dis-
crete valued image function is used. Additionally, only a finite sample of the set of
possible viewing angles is selected. So the feature space contains a set of points for a
given object that hopefully lie close to, but probably not on, the ideal hyper-surface.

The goal of our polyhedral tessellation of physical space is to generate a fine
enough, and regular enough, sampling of viewing angles to create a good approxima-
tion of the desired continuous surface in feature space. By good approximation, it is
meant that any irregularities in the feature space surface are represented clearly in our
sampling. A set of library samples for a known object in a three dimensional feature
space and feature vectors for unknown objects of both the same and different types are
shown in figure 5. An error is made by matching the unknown that does nct lie on the
hyper-surface shown to a library point that does.

The first stage of CQA tries to avoid the type of erroneous classification shown in
figure 5. To do this, each library view has associated with it a measure of the local,
same-class variability. This can be envisioned as a measure of the surface smoothness
and fineness of tessellation in feature space around that library point.




The Euclidean distance, D e between an unknown feature vector and its best match
library feature vector is defied as

Deain=minDe (7 (), V) (5)

where i indicates object type, j viewing position, and Vi an unknown feature vector, is
normalized by the library selection’s variability measure. For example, if D,y Selects
object iype k from view point 1, then

Deanx
Doaa,=Coa () ()

Empirical data are then used to assess the likelihood that the unknown feature vector is
known object, base on D ,,-

Two different measures of library variability have been used. Both examine all
the library viewing points in physical space neighborhiood about the viewing point of
interest. Therefore, n viewing points within o. degrees of our viewing point of interest
will be selected, and the variability statistics based on feature vectors associated with all
these viewing points will be developed.

The first measure is the standard deviation of D between the library view of

interest, and the library views of the same object type in the selected neighborhood:

12
COA,(i) =[% Z OFOOFE ] - E)a] 7)

where nhd(j) is the neighborhood of j, with n viewing locations in it. The notation em-
phasizes that the neighborhood is in physical viewing space and not in feature space.

D, is the mean value for De in that neighborhood. The second measure is the maxi-
mum D, between the view of interest and the neighborhood views:

CQA (ij) = kgﬁl:(i;)c[':(oi @).F(oi (k)] (8)

The second method is a simple order statistic-type approximation of the first but yields
superior results. Since these measures are precomputed from our a priori knowledge,
the complexity of calculating the measure has no effect on classification time require-
ments.

13




Intra-class CQA

Once an unknown feature vector has passed the first level of CQA, it can be said
with a computed level of certainty, that the unknown object is one from a known class.
The second level of CQA now addresses the probability that our specific instance
selection {type and/or orientation), from the set of known object types in that class, will
be in error. Whereas, the first CQA level considers the possibility of membership in a
class known to the system, in the second level of CQA this is taken as a certainty, and
the quality of the specific instance identification is addressed.

Misclassification arises from several sources. For high quality data, a significant
cause is insufficiently fine viewing point sample. Additional problems exist for lower
quality data; noise distortion and reduced spatial resolution can make similar object
indistinguishable. These last two problems are often dependent on the unknown data,
rather than the known data. Consequently, it is difiicuit to make allowances specifically
for data quality using precomputation bases on the a priori known database.

For level two CQA, the focus has been made conceptually on misclassification
due primarily to insufficient sampling. An example of how this type of misclassification
occurs is shown in figure 6. Here, a feature vector belonging to known type is misclas-
sified as another type, because the library sampling is insufficient to characterize the
feature space hyper-surface. The additicnal problems of noise and resolution are not
really independent of library sampling density. An adequate amount of sampling at a
given noise and resolution level may become inadequate under the burden of increased
feature vector variability due to an increase in noise and/or decrease in resolution.

The initial method used for level two CQA was to normalize the Euclidean dis-
tance from an unknown feature vector to the best match library selection by a confusion
factor, CQA > The confusion factor was the smallest of the Eiclidean distances be-

tween the selected library feature vector and all other library feature vectors for objects
of different type or orientation. For example, to determine the type confus:on factor for
a library feature vector of airplane 1, that vector would be compared to all library feature
vectors of planes 2 through 6. specifically;

14




CQA,(i,j)=min D¢ (¥j), V(1) (9)

kziand |

gives the formula for determining CQA,, for type identification. The notation emphasizes

that this measure is dependent on the goemetry of feature space. For orientation
testing, all choices of a different orientation could be searched;

CQA, (i) =min De (¥ (), ¥ () (10)

but beacause of the dense sampling of views for a given type, this was not seen as a
useful measure. So, for orientation CQAZ, the measure from equation 9 is used; the

success is simply measured based on a different criterion.

As with the first level of CQA, the normalized Euclidean disrtance,

D - De.miN
cor2™ TQA,

is then used to generate an emperical estimate of the probability of error.

EXPERIMENTAL RESULTS

The results are presented here in two sections to more clearly illustrate the
behavior of different parts of the system. The first section discusses the results for type
and orientation determination for the airplane test sets using the different types of
feature vectors. The second section illustrates the additional effects of applying CQA
analysis to the system. Results for this latter section are generated by combing the

airplane and nonairplane test sets.




Type and Orientation Identification

This section presents results for Fourier descriptors, silhouette moments, and a
combination of silhouette and range moments used to determone airplane type and
orientation. These feature vectors are based on two dimensional contours, two dimen-
sional slihouettes, and 2 1/2-dimensional range imagery, respectively. Type clas-
sification is correct if the correct airplane of the six possible is obtained from the best
library match. The angle classification is correct if the angle of the library entry of the
best match is one of the nearest neighbors in viewing space to the test shape. For our
experiments, this means that the angle difference must be less than 10 degrees.
However, further considerations are necessitated by the shape symmetry of the
airplanes.

Because of the bilateral symmetry of airplanes, any projection of a three-
dimensional view into two dimensions (e.g., a contour or silhouette) will be inherently
ambiguous. That is, for any given viewpoint, there exits an associated different view-
point from which the two dimensional projection of the object shape would be identical
(possibly differing by an image plane rotation which is moved by normalization). For
example, the silhouette of an airplane viewed from directly above is identical to the
silhouette of that airplane viewed directly from below. Since it is impossible for the
system to distinguish between these two conditions, a folded angle criteria is defined in
which an angle classification is said to be correct if either of the two ambiguous view-
points are selected by the system. In a practical environment, other cues such as
direction of motion or multiple views could be used to disambiguate between the two
possible angle interpretations. !

Results for both the noiseless and noisy test sets for the three types of feature
vectors are shown in figure 7. The moment-based feature vectors are all balanced; this
was found to improve the success rate by 3 to 5% (ref 5). For Fourier descriptors,
feature vector balancing was found to reduce the success slightly, especially when a
large number of feature vector elements were used. This is most probably due to the
emphasis of high frequency components that are highly sensitive to contour perturba-
tion caused by noise. Consequently, all Fourier descriptor results are presented without
balancing.




The following general observation were made from figure 7:

1. Little improvement for any technique in using more than 20 feature vector
elements for classification.

2.  Confirmation for our findings that moments are, in general, more effective than
Fourier descriptors as feature vectors, and are more robust with respect to noise.
For moments, range moments alone (results not shown here) produce similar
type identification results to silhouette moments alone, but the two combine
synergistically to produce markedly better results.

3. The majority of errors for the two dimensional image-based measures stem from
the symmetry ambiguities. In most cases, the folded angle results are
slightlyworse (several percent) than the type classification results. Folded angle
consideration produces only a small improvement for combined silhouette and
range moment feature vectors (similar behavior is seen for range moments
alone).

Applying CQA

This section relates the results of applying the two levels of CQA to class, type,
and orientation classification. The same three feature vector generating methods as in
the previous section are used here. A single feature vector length greater than 20
elements was considered for each feature vector element type; a vector length that
corresponded to a natural subset for that feature vector type was selected. The vector
lengths were: Fourier descriptors (ref 23), silhouette moments (ref 24), and silhouette
and range moments (ref 25). In this case, only the noisy test results are presented, and
only with folded angle testing.

For CQA ,, the goal is to determine if the current unknown view is an airplane.

These results where the number of nonairplanes rejected is plotted against the number
of airplanes rejected for different thresholds of the confidence measure is shown in
figure 8. From this graph, it is possible to select a threshold that will optimize the per-
formance based on the relative costs of accepting a nonairplane and rejecting an
airplane
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The Euclidean distance is used as a baseline for all methods. In all cises, the
Euclidean distance was a good confidence measure that enabled over 80% of the
nonairplanes to be rejected without rejecting more than 10% of the airplanes. The
performance of the Fourier descriptors was better than for silhouette moments when
the threshold is set to reject only a small number of airplanes (more than 10%) are
rejected. The performance of the silhouette and range moments was inferior when a
small number (less than 5%) of airplanes are rejected but superior when a large number
of airplanes (15%) are rejected.

The CQA ; confidence measure is the standard deviation of variations in feature

space corresponding to small view angle perturbations in local geometric space. When
compared to the Euclidean distance alone, this gave very poor resuits for the Fourier
descriptors but much better results for both moment methods and low airplane rejection
thresholds. However, the Euclidean distance gave superior results for sithouette mo-
ments for a large rejection threshold.

The maximum distance to a local neighbor metric shows excellent results for the
silhouette and range moments and a small improvement over Euclidean distance for
silhouette moments except for high airplane rejection levels. For Fourier descriptors,
this method gives slightly worse results than the Euclidean distance. From this single
test, it would seem that the maxdist method is the most appropriate confidence meas-
ure to use for moment feature vectors, and the Euclidean distance is the best , by a
small margin, for Fourier descriptors.

The test for CQA, is the minimum distance from the matched library entry to a

library entry of a different type. The effect on the classification success after low confi-
dence responses have been rejected is shown in figure 9. Low confidence responses
are determined by a threshold on either the Euclidean distance to the matched library
entry or the CQA , measure. Results are shown for both type and folded angle clas-

sification.

In all cases, the CQA , measure is a dramatic improvement over the Euclidean

distance for type classification, especially when the reject set is large. The most
marked improvement is for the silhouette and range moment feature vectors.. The result
of using CQA , in this form for angle classification is not good. A slight improvement

over the Euclidean distance is noted for Fourier descriptors; however, for the moment
feature vectors, the results are worse than the Euclidean distance. This is not a surpris-
ing result; the error model used for type errors is inadequate for modeling orientation
errors. Future work will produce a more sophisticated and appropriate model for this
phenomenon.




CONCLUSION

A systems approach to identifying objects from global feature descriptors has
been presented. The importance techniques and results discussed included;

1. An exhaustive (in viewing the angle sense) worst case test set and testing
procedure for arbitrary feature vector descriptors.

2. Results for orientation and type classification with and without uncertainty
analysis.

3. Improvements over Euclidean distance thresholding, for the rejection of objects
not included in a class of known objects, by considering local hyperspace
behavior (CQA .).

4. Improvements over Euclidean distance thresholding, for enhancing
classificationtion success, by rejecting some inputs as being likely to result in
errors (CQA ,).

5. Integration of the above techniques in an architecture that emphasizes
precomputation and compilation of the known object database and CQA
measures, to allow simple runtime analysis.

The resuits have been for a single experiment involving six airplanes;
therefore, they may not generalize well to other applications. However, for this
experiment consistent performance trends for Fourier descriptors and silhouette
moments are seen, with the moments producing superior results for both type and
orientation classification. Incorporating range information in the feature vector
descriptors, with the silhouette and range moments, produces dramatically better
results than for the two dimensional methods for type identification. A selection of
classification results for type identification and orientation are summarized in
tables 1 and 2, respectively.

Results for orientation classification have been inferior to the type clas-

sification results in all cases. Future work will be directed to the development of
techniques for improving the orientation classification.
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Table 1. Type classification resuits

Fourier Silhouette Silhouette and

dec~riptors moments range moments

(23 elements) (24 elements) (25 elements)
Original test data 90.48 94.18 94.91
Noisy test data 84.26 93.12 94.31
CQA, (5% reject) 86.43 94.43 95.96
CQA, (10% reject) 88.31 95.81 97.35
CQA, (25% reject) 93.30 98.06 98.67

Table 2. Orientation (folded) classification results

Fourier Silhouette Silhouette and

descriptors moments range moments

(23 elements) (24 elements) (25 elements)
Original test data 90.80 97.19 90.28
Noisy test data 82.41 84.72 90.60
CQA, (5% reject) 84.20 90.53 90.95
CQA, (10% reject) 84.94 91.62 91.55
CQA, (25% reject) 87.65 92.68 92.24
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KNOWN VIEW MODEL DATA

(CLASS. TYPE and/ REJECT
', or
ORIENTATION DECISIONS) CLASSIFICATION

Figure 1: The overall structure of an object icentification system using the
techniques developed in this report. Note the emphasis on

precomputation and compilation of necessary data bases using
a priori knowledge.
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®
Figure 2. An icosahedron (2) and the partitioned suriaces that define the

locations of library views mapped to the surface of a sphere (b)
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Figure 3. The viewing sphere showing (a) model library viewpoints (marked
with -) and the worst case viewpoints
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Airplane object

Nonairplane objects

Figure 4. The test images for a single viewpoint shown with and without
added noise (resolution of the noisy test set is 96x96x96).
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(@) unknown feature vector
@ library feature vector

Figure 5. A three-dimensional feature space of correct and enormous
identifications of unknown feature vectors (Feature space surface
associated with a known object is shown in gray; known feature
vectors and their nearest neighbors are marked. Unknown
feature vectors are shown with their closest match known feature
vectors. Unknown U1 does not lie on the surface of allowable
values and is therefore incorrectly matched to the known object.
U2 does not lie on the surface and is all correctly matched.)
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O Type A feature vector
® Type B feature vector

Figure 6. Confusion in feature space between two different objects A and B
(an unknown feature vector of type A is incorrectly matched to a
type B known feature vector because of an insufficient sampling of
known feature vectors of type A. This is affected by both the
topology of A's feature space and the proximity of b’s surface.
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